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Using both simulation and experiment, we investigate the robustness of dynamical decoupling
sequences to pulse errors: rotation errors and detuning errors. Whereas prior work examined the
effect of errors on coherence times, here we show that quantum sensing can be affected by pulse
errors in dramatically different ways than coherence times alone. We also explore the effects of
qubit leakage: off-resonant coupling to other quantum levels. We find order-of-magnitude differences
between commonly-used dynamical decoupling sequences in both their sensitivity to pulse errors and
leakage.

I. INTRODUCTION

Dynamical decoupling sequences are commonly
used to extend the lifetime of qubits in noisy environ-
ments [1] and are essential for certain kinds of quan-
tum sensing [2]. Here, we consider variants of the
Carr-Purcell pulse sequence [3] which are commonly
used to achieve long coherence times [1] and to per-
form quantum sensing of both ac signals [2] and
nuclear magnetic resonance (NMR) spectroscopy of
single nuclear spins [4, 5].
Thanks to ultralong coherence times, sensing se-

quences often involve thousands of pulses applied to
the sensing qubit [6–8]. Thus, it is important to
use a sequence which is insensitive to pulse errors.
We desire a sequence which — even with imperfect
pulses — can both preserve coherence for thousands
of pulses and provide efficient and precise sensing.
Prior work in this field has examined different dy-

namical decoupling sequences in terms of their abil-
ity to isolate a system from environmental noise, and
the sensitivity of coherence times to pulse errors [9–
16]. In this work we consider an environment with
low noise, and examine the effects of pulse errors on
both coherence times and sensing. We find that —
for some certain commonly-used protocols — pulse
errors affect sensing much more than the coherence
time, and that long coherence times alone do not
necessarily imply favorable sensing properties.
Additionally, the dynamical decoupling sequence

can introduce errors through qubit leakage [17–20].
Because qubits are typically created by isolating two
levels of a multilevel quantum system, the dynamical
decoupling pulses cause coupling to states outside
the 2-level qubit subspace. Even if the probability
of making a transition to a non-qubit level is ex-
tremely small for a single pulse, a very small leak
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can become highly problematic after a large num-
ber of pulses. We find that different pulse protocols
are affected by this off-resonant coupling very dif-
ferently, resulting in coherence times that differ by
orders of magnitude.

II. SENSING SEQUENCES

We consider the Carr-Purcell (CP) pulse se-
quence [3] and some of its popular variants. We
test these sequences by performing quantum sens-
ing (and NMR spectroscopy) of unpolarized nuclear
spins both experimentally and through simulations
[4, 5, 7]. A schematic of the pulse sequence is shown
in Fig. 1.
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FIG. 1. Schematic of the pulse sequence. After an initial
π
2

pulse and a “wait time” of τ
2
, an even number of π

pulses is applied, with a wait time of τ between each
π pulse. This is followed, symmetrically, by a final wait
time of τ

2
and a final π

2
pulse. All wait times are specified

between the centers of the finite-width pulses; we define
the pulse repetition rate as 1/τ .

In all sequences, the initial and final pulses have
the same phase (denoted as being along the x-axis of
the Bloch sphere). In the CP sequence, all π pulses
are in phase with the π/2 pulses. The variants ex-
plored here — CPMG [21], APCP [22], XY [23, 24]
and MLEV [25–27] — differ in the phases of the π
pulses, as detailed in Table I.

In brief, CP is extremely sensitive to pulse errors.
As such, it is not viable in our experiments. We
include it here for historical reasons and for compar-
ison to the other sequences, as it occasionally offers
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Protocol π pulse phases

CP (xx)n/2

CPMG (yy)n/2

APCP (xx)n/2

XY4 (xyxy)n/4

XY8 (xyxy yxyx)n/8

XY16 (xyxy yxyx xyxy yxyx)n/16

XY32 (xyxy yxyx xyxy yxyx

xyxy yxyx xyxy yxyx)n/32

XY64 (xyxy yxyx xyxy yxyx
xyxy yxyx xyxy yxyx
xyxy yxyx xyxy yxyx

xyxy yxyx xyxy yxyx)n/64

MLEV8 (xxxx xxxx)n/8

MLEV32 (xxxx xxxx xxxx xxxx

xxxx xxxx xxxx xxxx)n/32

MLEV8Y (yyyy yyyy)n/8

MLEV32Y (yyyy yyyy yyyy yyyy

yyyy yyyy yyyy yyyy)n/32

TABLE I. The various pulse protocols and their re-
spective phases, for the case of n total π pulses. The
pulse phases are specified according to the correspond-
ing Bloch axis; a bar denotes the negative axis. The
initial and final π pulses are along the x axis.

insight.

CPMG is a commonly used sequence which is
much less sensitive to pulse errors than CP if the
qubit is in a specific “protected” state. However,
when sensing another spin — a condition in which
the initial state evolves from its protected state —
it becomes more sensitive to pulse errors.

While APCP commonly appears in textbooks [22],
we have not found many examples of its use in the
literature. Here we find it offers similar performance
to CPMG, with some differences in the details.

The XY family of pulse sequences is colloquially
known as being “state agnostic”, in that it should
function comparably well for any state of the qubit
(unlike CPMG, which offers protection from errors
only when the qubit is in a specific state). As one
would expect from this description, in simulations
we find it is insensitive to pulse errors both when
sensing and when not. Unfortunately, we also find
it is much more sensitive to off-resonant coupling
to other levels than either CPMG or APCP. In this
paper we focus on XY16 for brevity. In our simula-
tions, XY16 outperformed XY4 and XY8, but there
were negligible differences between XY16 and XY32.
In experiment, we similarly found that XY16 gave
better performance than XY8, and negligible differ-
ences between XY16, XY32, and XY64.

Similar to XY, the MLEV family of pulse se-
quences offer robustness to pulse errors both when
sensing and not sensing. Unfortunately, we find

MLEV also suffers from off-resonant coupling to
other levels. In simulations, we find the least sen-
sitivity to off-resonant coupling for the MLEV8,
MLEV8Y, and MLEV32Y sequences. Here we
present results for MLEV32Y; in experiment, we
found comparable results for MLEV8 and MLEV32.

III. SIMULATION: SENSITIVITY TO
PULSE ERRORS

We consider using a single spin-1/2 quantum sen-
sor to perform nuclear magnetic resonance spec-
troscopy of a single spin-1/2 “target” spin [4, 5].

We assume that the sensor spin is prepared in a
pure state (spin up) at the start of the sequence, and
that the target spin is in a mixed state with equal
probability of spin up or down (i.e. a thermal state
in the limit T → ∞).

We note that for sensing of classical oscillating
fields, the relative phase of the oscillating field and
the sensing pulse sequence is crucial to the signal de-
tected [2]. Sensing of a target spin in a fully mixed
state is in some ways simpler: prior to the mea-
surement the expectation value of the magnetic field
of the target spin is zero and there is no phase to
“match”.

We note that a sensor superposition of m = 1
and m = 0 (or any other superposition with nonzero
average m) will shift the measured precession fre-
quency of a nearby spin due to the magnetic dipole-
dipole interaction of the sensor and the target spin;
this is useful for measuring the position of the target
spin [28]. Here — with a spin-1/2 sensing particle
and its superposition of m = ±1/2 states — we find
in simulations the measured precession frequency of
the target spin is unaltered by the interaction.

Both the sensing and target spins are in a static
bias magnetic field, and interact via the magnetic
dipole-dipole Hamiltonian [29]. We assume that the
dipole-dipole interaction is weak compared to the in-
teraction of the sensor spin with the bias field, and
include it via first order perturbation theory. For
simplicity, we assume the spatial separation of the
spins relative to the bias field is such that the SzSz

and the SzSx interaction terms (using the notation
of reference [30]) are of equal magnitude. We propa-
gate the system in time via the von Neumann equa-
tion with the assumption of no decoherence.

For simplicity we assume the interaction strength
and duration of the sequence are perfectly matched,
so that the sensing spin is flipped conditionally on
the presence of the target spin, for the case of perfect
delta-function pulses, no decohernece, no coupling to
other states, and the pulse repetition rate on reso-
nance with the Larmor precession frequency of the
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target spin: 1
2τ = fLarmor.

To examine the effects of pulse errors, we intro-
duce “rotation fraction” and “detuning” parameters.
The detuning parameter describes the detuning of
the drive pulses from the sensor spin’s resonant fre-
quency, in scaled frequency units of 1/τ . The ro-
tation fraction describes the pulse rotation in the
case of zero detuning: a rotation fraction of 1 is the
case of perfect pulse, while a rotation fraction of 0.5
would imply the nominal π pulses are actually π/2
pulses, and the π/2 pulses have become π/4 pulses.
We assume the same Rabi frequency for both the π
and π/2 pulses.

A. Delta-function pulses

1.0

0.8

0.6

0.4

0.2

0.0

1.101.051.000.950.90
Precession frequency

1.0

0.8

0.6

0.4

0.2

0.0

Pr
ob

ab
ilit

y

1.0

0.8

0.6

0.4

0.2

0.0

 CP
 CPMG
 APCP
 XY16
 MLEV32Y

Delta-function pulses
 CP
 CPMG
 APCP
 XY16
 MLEV32Y

Rotation fraction 1
Detuning 0

Rotation fraction 1
Detuning 0.05

Rotation fraction 1.05
Detuning 0

FIG. 2. The probability that the sensor spin ends the
sensing sequence in the spin up state, plotted as a func-
tion of the Larmor precession frequency fLarmor of the
target spin. fLarmor is in scaled units of 1

2τ
. Each se-

quence contains 256 delta-function π pulses. Detuning
and rotation fraction are as described in the text.

Simulations of a sequence of 256 π pulses — in
the limit of delta-function pulses — are shown in
Fig. 2. In the case of perfect pulses with no rotation
or detuning errors (Fig. 2 top), all sequences return
identical behavior. The width of the peak is Fourier

limited.

In the case of detuning errors (Fig. 2 middle),
identical results are observed.

For the case of imperfect rotations (Fig. 2 bot-
tom), APCP, XY16, and MLEV32Y are unaffected,
but the performance of CP and CPMG suffer. Even
off-resonance with the target spin, rotation errors ac-
cumulate for CP, leading to a seemingly “random”
result. The presence of the target spin does affect
the outcome, but in ways that would be impractical
to look for in an experiment. For CPMG, if the pre-
cession of the target spin is far off-resonance with
the sequence, the sensing qubit remains in the ini-
tial state, which is largely protected from rotation
errors. However, on resonance — where the sensing
qubit evolves away from its initial state — the per-
formance is compromised. The peak is split, caus-
ing the effects of the target spin to show up at fre-
quencies other than the true precession frequency.
Similar splitting is seen for CP. In the case of an
inhomogenous distribution of detuning errors, this
splitting would lead to line broadening.

To examine the behavior for simultaneous rota-
tion errors and detuning errors, Fig. 3 shows the
simulation results for the CPMG, APCP, XY16 and
MLEV32Y sequences when at a pulse repetition rate
on resonance with the target spin. Fig. 3 shows the
results of the sequence in the case of no target spin
(the graphs at the left) and the case of a target spin
(the graphs at the right).

We note that for true delta-function pulses, the
detuning does not affect the rotation caused by the
pulse, and only affects the phase evolution between
pulses. As such, the pattern seen in Fig. 3 repeats.
For the sequences shown here, the results for detun-
ings from 0.5 to 1 are a mirror image of those from 0
to 0.5, and the results from rotation fractions from
1 to 2 are a mirror image of those from 0 to 1, etc.

In Fig. 3, we note that the point at a rotation
fraction of 1 and a detuning of 0 is the case of per-
fect pulses. To maintain long coherence times in the
presence of pulse errors, one would want to obtain
the ineraction-off case to return this “‘perfect pulse”
result (spin down) for a wide range of detunings and
rotation fractions. For efficient sensing in the pres-
ence of pulse errors, one would want to obtain — for
the interaction-on case — the opposite result (spin
up) for a wide range of detunings and rotation frac-
tions. First, we see that there are large differences
between the different sequences. Second, we see that
that robustness with respect to pulse errors in the
interaction-off case does not imply the same for the
interaction-on case.

In the absence of interactions, CPMG is highly
insensitive to errors in both detuning and rotation:
for the conditions of Fig. 3 the sequence returns the
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FIG. 3. Simulation of the outcome of the sensing se-
quence, plotted as a function of rotation error and pulse
detuning, for a sequence of 256 π pulses, as described in
the text. The plot shows the probability of measuring
spin up at the end of the sequence: black is a probabil-
ity of 1, and yellow is a probability of 0. The probability
is calculated in the limit of delta-function pulses. On
the left (“interaction off” plots), the interaction between
the sensing spin and the target spin is zero; at the right
(“interaction on” plots) the interaction strength is as de-
scried in the text.

“correct” answer with a probability > 0.9 for any
detuning as long as the rotation fraction is > 0.8
and < 1.2. This is because the initial state pro-
duced by the initial π/2 pulse of the sequence is in-
sensitive to errors in the successive π pulses. One
would thus expect long coherence times in the ab-
sence of an interaction (or off-resonance from the
precession frequency), even in the presence of large
pulse errors. Naively, one might expect these long
coherence times would allow for excellent sensing in
the presence of pulse errors. Unfortunately this is
not the case. In the presence of the interaction, the
state will evolve away from this “protected” state,
and CPMG becomes very sensitive to pulse errors,
and sensing only works well for extremely small ro-
tation errors. We note that there is a much larger
region of stability at a detuning of 0.5 than there is

at a detuning of 0: at a detuning of 0.5, the phases
of the CPMG sequence are identical to the APCP
sequence at zero detuning.

In the absence of interactions, APCP shows simi-
lar insensitivity to pulse errors as CPMG. For sens-
ing the range of “tolerable” pulse errors is much
narrower than without interactions, but has a sig-
nificantly larger region than CPMG.

In the absence of interactions, XY16 is marginally
more sensitive to pulse errors than APCP and
CPMG. However, in the presence of interactions,
XY16 offers much better performance: for delta-
function pulses, efficient sensing can be observed
over a relatively wide range of rotation errors in the
presence of arbitrarily-large detunings. Comparable
performance is observed for MLEV32Y.

From these simulations, for the interaction off case
(i.e. sensing off-resonance from the Larmor preces-
sion frequency) we would expect all four protocols
to offer long coherence times in the presence of quite
significant errors. However, for sensing, APCP and
CPMG would be much more sensitive to pulse errors
than XY16 or MLEV32Y.

It is important to note that the disappearance of
signal in the interaction-on plots of Fig. 3 does not
necessarily correspond to a complete disappearance
of signal. Fig. 3 shows the signal for a pulse repeti-
tion rate on resonance with the target spin’s Larmor
precession. As seen in Fig. 2, pulse errors can lead
to the signal shifting to other pulse repetition rates.

B. Finite width pulses

Figure 4 reproduces the conditions of Fig. 2 for
the case of the longest-possible pulses (assuming the
π/2 and π pulses have the same Rabi frequency):
the π pulse duration is 2

3τ .
For the case of perfect rotations and no detuning

(the top panel of Fig. 4), we find the surprising re-
sult that the sensing sensitivity of CP, APCP, XY16,
and MLEV32Y suffers very little. Despite spending
the majority of the time undergoing rotations, these
protocols are able to sense spins nearly as efficiently
as the case of delta-function pulses. Notably, this
is not the case for CPMG, where the probability of
flipping the sensing spin due to its interaction with
the target spin is reduced by more than a factor of
two.

For the case of perfect rotation and a small detun-
ing (middle panel of Fig. 4), we observe drastically
different behavior than for delta-function pulses (the
middle panel of Fig. 2). Here, the sensitivity
of CPMG, APCP, and CP are all significantly de-
graded; XY16 and MLEV32Y suffer little.

For the case of small rotation errors and zero
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FIG. 4. Probability of the sensor spin being up after
performing the sensing sequence indicated, plotted as a
function of the Larmor precession frequency fLarmor of
the target spin, as in Fig. 2. Each sequence contains 256
π pulses; here the Rabi frequency is as low as possible
without the π and π/2 pulses overlapping.

detuning (bottom panel of Fig. 4), only CP and
CPMG are significantly adversely affected.

To examine sensing in the presence of combined
rotation and detuning errors, Figure 5 repeats the
simulations of Fig. 3 in the case of finite-width
pulses.

For finite-width pulses, the detuning affects both
the phase evolution between pulses and the effects
of the pulses themselves. Consequently, these plots
do not exhibit the periodic behavior observed for
delta-function pulses. The range of errors for which
efficient sensing is obtained is significantly reduced
for all protocols, and they all have become more sen-
sitive to detuning errors. As before, in the absence of
a target spin, CPMG and APCP are slightly less sen-
sitive to pulse errors than XY16 or MLEV32Y. As
before, for sensing purposes XY16 and MLEV32Y
can tolerate a much wider range of errors than ei-
ther APCP or CPMG.
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FIG. 5. Simulation of signal as a function of rotation
error and pulse detuning, for a sequence of 256 π pulses.
This figure is identical to Fig. 3, but with a Rabi fre-
quency such that the duration of a π pulse is equal to
τ/4.

IV. SIMULATION: OFF-RESONANT
COUPLING TO OTHER LEVELS

Consider a three-level system as shown in Fig. 6.
The states |1⟩ and |2⟩ are the sensing qubit levels,
and the state |3⟩ is a potential “leak”. The drive
that couples levels |1⟩ and |2⟩ can couple level |2⟩
to level |3⟩, with a detuning δ. The strength of the
|1⟩ ↔ |2⟩ and |2⟩ ↔ |3⟩ transitions are assumed
to be equal. We consider the case of this isolated
three-level system with no decoherence and a noise-
less environment. We start the system in state |1⟩,
and apply a pulse sequence driving between levels |1⟩
and |2⟩ with pulses that — in the absence of level
|3⟩ — would be perfect π/2 and π pulses with zero
detuning on the |1⟩ ↔ |2⟩ transition.

For a two-level system starting in a single state,
the probability of a single pulse — of Rabi frequency
ω, duration T and detuning δ — driving a transition
to the other state to is given by the well-known Rabi

formula P = ω2

Ω2 sin
2(ΩT/2) where Ω =

√
ω2 + δ2 is

the generalized Rabi frequency [31].
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FIG. 6. Schematic of the 3-level model.

Thus, one would expect the effects of the leak to
be minimized in the limit that δ ≫ ω, as the transi-
tion probability from level |2⟩ to level |3⟩ will go to
0. However, even if the probability of a leak from a
single pulse is low, it may not remain low over large
numbers of pulses.

For a multi-pulse sequence, significant additional
complexity arises due to interference between succes-
sive pulses. This interference will depend sensitively
on the phase evolution of the system, which is deter-
mined by the detuning of the third level, the pulse
repetition rate, and the relative phases of successive
pulses. As seen in Fig. 7, there are very strong
differences between different pulse sequences.
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FIG. 7. The probability of each state at the end of a sensing sequence, plotted as a function of the detuning δ of
the third level. Results are shown for the CP, CPMG, APCP, XY16, and MLEV32Y protocols, as labeled; each with
256 π pulses. For these simulations, the Rabi frequency was chosen to give a π pulse duration of τ/4. The detuning
δ is expressed in units of the pulse repetition rate 1/τ ; to express it in terms of the Rabi frequency used, the x-axis
should be scaled by a factor of 0.5.

In the absence of the third level (or in the limit
that δ → ∞), all sequences shown in Fig. 7 would
end with the system in state |2⟩, with probability 1.

For small δ, all five pulse protocols suffer greatly,
as would be expected: even a single pulse has a large
probability of transferring population to the third

level. We were not able to discern any obvious pat-
terns in the simulation results.

At large δ, clear patterns emerge, as would be ex-
pected: a single pulse has a small probability of caus-
ing a transition to the third level, and — for a given
pulse sequence — the detuning of the third level will
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determine whether successive pulses interfere con-
structively or destructively. The CP sequence shows
a clear pattern of periodic peaks. The CPMG and
APCP sequence show the same pattern, but the am-
plitude of every other peak is highly suppressed (too
small to be visible on the scale of Fig. 7). We do not
have an intuitive understanding of this suppression.
As might be expected from the relative phase of suc-
cessive π pulses, the CPMG peaks occur at the same
δ values as those of CP, while the peaks of the APCP
sequence lie midway between the CP peaks. The
XY16 and MLEV32Y sequences, with their more
complex pattern of phases, exhibit a denser peak
structure than the other three.

The overall “envelope” of the leak depends on the
Rabi frequency and δ, but the details depend ex-
tremely sensitively on δ and the pulse repetition
rate. For an inhomogenously-broadened ensemble
(as will be used in the experimental section), the
relevant behavior would be the “average behavior”
obtained by averaging over a range of δ’s. This is
plotted in Fig. 8 as a function of the number of
pulses in the sequence for the same protocols of Fig.
7.
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FIG. 8. The probability of being in the correct state at
the end of the pulse sequence, plotted as a function of
the number of π pulses in the sequence. In the upper
graph with low Rabi frequency, the Rabi frequency is
such that the π pulse duration is 0.5 of the π pulse period;
in the lower graph with high Rabi frequency, the π pulse
duration is 0.1 of the π pulse period. The probabilities
are averaged over a range of third-level-detunings from
20 to 25 times the pulse repetition rate.

Dramatic differences are observed. While APCP
and CPMG suffer initial losses comparable to the
other sequences, these losses quickly asymptote, and

little degradation is seen for longer sequences. CP
and XY16 continue to degrade until the outcome is
essentially random, at similar rates. MLEV32Y ap-
pears to be an intermediate case, with a slower initial
decay than CP and XY16, and reaching an asymp-
tote that — while significantly worse than APCP
or CPMG — is not as bad as either CP or XY16.
We note that at as the Rabi frequency is increased,
the behavior worsens: the decay is more rapid for
CP, XY16, and MLEV32Y, and the asymptotes are
lower for APCP, CPMG, and MLEV32Y.

Thus, in the presence of significant leaks to other
levels and an inhomogenously broadened sample, we
would expect APCP and CPMG to achieve much
longer coherence times than XY16, with MLEV32Y
as a possible intermediate case. This effect is ob-
served experimentally, as detailed in section V.

V. EXPERIMENT

We work with ensembles of rubidium atoms
trapped in a neon matrix at a temperature of 3 K
[7, 32, 33]. Neon has a 0.25% natural abundance
of 21Ne with I = 3/2; all other naturally-occurring
isotopes are I = 0 [34]. Typical rubidium densities
in the matrix are on the order of 1015 to 1016 cm−3.
The neon matrix — with the exception of the 21Ne
and implanted Rb — is a magnetically quiet envi-
ronment, offering long spin coherence times [7].

The initial spin state of rubidium is prepared by
optical pumping [7]. Transitions between mF levels
are driven by RF magnetic fields generated from a
single arbitrary wave generator. The sample is in
a static bias magnetic field on the order of 100 G,
which is sufficiently large that transitions between
differentmF levels can be spectroscopically resolved,
and 87Rb transitions distinguished from 85Rb tran-
sitions [7]. The spin state of the rubidium atoms
is read out using laser-induced fluorescence (LIF)
[32, 33] using the apparatus described in reference
[33], with the LIF signal continuously monitored by
an amplified photodiode.

A. Protocol

For the data presented in this paper, we work
with 85Rb. We optically pump its spin state with
a 20 ms pulse of circularly polarized laser light at
a wavelength of 787 nm. This preferentially popu-
lates the F = 3,mF = −3 hyperfine state. Typ-
ical peak beam intensities are ∼ 40 mW/cm2; the
timescale for optical pumping is ∼ 3 ms. After
pumping, a series of RF sweeps transfers popula-
tion from mF = −3 to mF = −1; all our RF pulses
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drive between mF levels within the F = 3 hyperfine
manifold of 85Rb.
After the population transfer, the dynamical de-

coupling sequence — as described in section II — is
run with RF pulses driving between the mF = −1
and mF = 0 levels. At the end of this sequence, a se-
ries of RF sweeps transfer population frommF = −1
to mF = −3 and from mF = 0 to mF = +3 to
increase readout contrast. Readout is done with a
pulse of light identical to our optical pumping pulse.
Because the readout pulse optically pumps the Rb,
only the LIF level at early times (≪ 3 ms) reflects
the spin state after the RF sequence [32].We take
the average LIF level from the first 0.2 ms of the
readout pulse as the signal; to normalize for inten-
sity fluctuations, we subtract the late-time LIF level
(an average of the LIF level from 14 to 15 ms after
the beam is turned on).
To ensure that the signal is not due to systematics,

this procedure is repeated with the phase of the first
π/2 pulse changed by 180◦, which should give the
opposite final state. The experimental signal pre-
sented in the following sections is the difference in
normalized LIF levels for the different initial phase
conditions.

B. Data

Typical data is shown in Fig. 9 for APCP and
MLEV32Y. Data is shown for two pulse repetition
rates: “on resonance”, with 1/2τ equal to the pre-
cession frequency of 21Ne, and “off resonance”, with
1/2τ far detuned from the 21Ne precession frequency.

To fit the decay of the LIF signal and extract a
value of the coherence time T2, we find the data does
not fit well to a single exponential. This is not sur-
prising, as the random distribution of Rb and 21Ne
atoms within the matrix would be expected to lead
to an inhomogeneous distribution of dipolar interac-
tions. Following the convention of reference [8], we
assume a flat distribution of exponential decay rates
from zero to a maximum rate. We fit the signal to
the resulting function, and report a T2 equal to the
inverse of the average decay rate.
In Fig. 9, dramatic differences can be seen be-

tween APCP and MLEV32Y. Off resonance, APCP
yields a T2 over an order of magnitude longer
than MLEV32Y. While one might naively conclude
APCP would thus be significantly better for quan-
tum sensing under these conditions, this advantage
is offset by the on-resonance T2’s: MLEV32Y is able
to sense the neighboring 21Ne nuclei roughly an or-
der of magnitude faster than APCP.
Unlike simulations, in which different effects can

be turned on and off, our experiments always suffer
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FIG. 9. The LIF signal (as described in section V A)
plotted as a function of the duration of the dynamical
decoupling sequence. Data was taken at a magnetic field
of ∼ 120 G: the on-resonance data is taken at a pulse
repetition rate of 80.341 kHz; the off-resonance data is
taken at 160 kHz. The π pulse duration was 3.5 µs. Fits
are as described in the text.

simultaneously from both detuning errors and off-
resonant coupling to other levels. The inhomogenous
linewidth of the mF = −1 to mF = 0 transition
in F = 3 85Rb is roughly 20 kHz [7], leading to a
distribution of detunings from resonance. Similarly,
the mF = −1 state and mF = 0 states suffer from
“leaks” due to off-resonant coupling to the mF = −2
and mF = +1 levels, respectively. At our typical
magnetic fields, the detuning from these neighboring
levels are ∼ 2 MHz.

We estimate typical rotation errors ≲ 2%. As
shown in section VE, these are expected to have
negligible effects on either the off-resonant coherence
time or the on-resonance sensing time.

We can investigate which problem — imperfect
pulses or leaks — is the dominant limitation by com-
paring results for different pulse Rabi frequencies.
High Rabi frequencies should suffer less from detun-
ing errors and more from leaks when compared to
low Rabi frequencies. T2 values for two different
Rabi frequencies are presented in table II for two
different Rabi frequencies for a variety of pulse pro-
tocols.

For comparison to the scaled simulations of sec-
tion III and IV, we note that the inhomogenously
broadened Zeeman transition has a HWHM on the
order of 10 kHz, which corresponds to a scaled de-
tuning on the order of 0.1, depending on the specific
pulse repetition rate. The adjacent Zeeman transi-
tions responsible for leaks out of our two-level sys-
tems are detuned on the order of 2 MHz, for a scaled
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Protocol ω T2 (ms)
160 kHz 80.341 kHz

APCP High 81 ± 13.7 15 ± 2.4
APCP Low 207 ± 28.8 31 ± 12
CPMG High 127 ± 7.78 6.3 ± 0.94
CPMG Low 195 ± 71 69.5 ± 49.3
XY16 High 0.18 ± 0.07 0.31 ± 0.08
XY16 Low 2.3 ± 0.16 1.6 ± 0.65
MLEV32Y High 0.61 ± 0.19 0.64 ± 0.22
MLEV32Y Low 8.4 ± 3.4 1.2 ± 0.14

TABLE II. Lifetimes of various protocols at two differ-
ent pulse repetition rates: on resonance with the 21Ne
precession at a pulse repetition rate of 80.341 kHz and
off-resonance at a pulse repetition rate of 160 kHz. Data
is shown for two different values of ω, the Rabi frequency.
“High” correponds to a π pulse durations of 1.0 µs, and
“Low” correponds to 3.5 µs. The error bars are the stan-
dard deviation of multiple measurements made over sep-
arate days, and as such include both the measurement
error of a single measurement as well as effects from day-
to-day changes in pulse errors.

detuning on the order of 20 (again, depending on the
specific pulse repetition rate).

C. Comparison of coherence times

We first consider the T2 when the pulse repeti-
tion rate is off-resonance with the 21Ne precession,
as listed in table II. Under these conditions, a longer
T2 is better for sensing [2]. We note that APCP
and CPMG have much longer T2’s than XY16 and
MLEV32Y. We attribute this difference to their rel-
ative sensitivity to the leak, as predicted in section
IV. This interpretation is confirmed by the sensitiv-
ity to the Rabi frequency: while APCP and CPMG
see their T2 increase by a factor of ∼ 2 when chang-
ing from high to low ω, XY16 and MLEV32Y see an
order-of-magnitude increase. As expected from the
simulations of section IV, MLEV32Y has a slightly
longer T2 than XY16 for both conditions.

We next consider sensing, when the sequence is
on-resonance with the 21Ne precession. A single tar-
get spin would be expected to perfectly flip a sin-
gle sensing spin, as in section III. But in our ex-
periment, with a distribution of sensing spins with
different nearest-neighbor target spins, which would
have different times to flip, the inhomogenous dis-
tribution of interactions would be expected to lead
to a reduction in T2. Here, a shorter T2 is better, as
it demonstrates greater sensitivity and a target spin
that can be measured in a shorter time. APCP and
CPMG show a significantly shorter T2 on-resonance
than off-resonance, demonstrating sufficient sensitiv-
ity to sense 21Ne. Both show improvement in the

sensing sensitivity at higher Rabi frequencies (which
should have reduced sensitivity to detuning errors);
this is especially dramatic for CPMG. For our ex-
perimental conditions APCP appears to offer better
performance than CPMG at low ω, and vice-versa
at high ω.

For both XY16 and MLEV32Y, at high ω the off-
resonance T2 is so short that sensing is not pos-
sible. However, for longer pulses, sensing is pos-
sible, with an on-resonance T2 measurably shorter
than the off-resonance T2. For our experimental con-
ditions MLEV32Y offers significantly superior per-
formance to XY16. Additionally, both XY16 and
MLEV32Y allow for sensing in much shorter times
than APCP or CPMG. This is expected from the
simulations of section III and the detuning errors
that are omnipresent in our data due to the inho-
mogenous linewidth of the 85Rb Zeeman transition.

1. Shaped pulses

We explored the use of shaped pulses by measur-
ing coherence times as a function of varying the ta-
per of a Tukey window [35]. Using tapered pulses
can reduce the power at frequencies far from the car-
rier frequency, which would be expected to reduce
leaks to off-resonance levels. Indeed, by changing
from a rectangular pulse to a tapered pulse, we were
able to improve both off-resonance coherence times
for MLEV32Y and the contrast between the on-
resonance and off-resonance conditions. However,
these improvements were at best ≲ 50%. While this
is a significant improvement, it was much smaller
than the order-of-magnitude differences from chang-
ing the Rabi frequency and pulse duration, and we
did not explore it further. All data (and simulations)
presented elsewhere in the paper are for rectangular
pulses for simplicity.

D. Comparison of spectral resolution

Figure 10 shows an NMR spectrum of the un-
polarized 21Ne spins present in the sample as mea-
sured by the ensemble of 85Rb atoms. We hold the
sequence duration fixed and vary the pulse repeti-
tion rate. When on resonance with the 21Ne nu-
clei (1/2τ = fLarmor), we see a change in the LIF
signal, as expected. Much as the on resonance T2

was dramatically different for APCP, CPMG, and
MLEV32Y, we also observe dramatic differences in
the linewidth of the 21Ne NMR signal.

These differences are qualitatively consistent with
the simulation results for finite-width pulses as seen
in Fig. 4. Small detuning errors only slightly af-
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FIG. 10. NMR spectra for three different pulse proto-
cols, taken at Rabi frequencies and sequence durations
that optimize the signal for each protocol (for our sys-
tem). APCP, CPMG, and MLEV32Y use π pulse du-
rations of 3.3 µs, 0.87 µs, and 6.6 µs, respectively, and
their signals are measured after a pulse sequence dura-
tion of 30 ms, 10 ms, and 3 ms, respectively. Each are
fit to a Lorentzian, and the data is normalized so the fit
asymptote is 1. The fits yield FWHM of 25, 14, and 1.3
kHz, respectively.

fect the spectrum of the XY and MLEV protocols,
while for CPMG and APCP detuning errors lead to
both a reduction of the on-resonance signal and the
appearance of signal at near-resonance frequencies.
For the inhomogeneous broadening of our sample,
these shifts result in line broadening of the NMR
signal.

E. Rotation errors

To examine the sensitivity of the sensing protocols
to rotation errors, we deliberately introduce rotation
errors by holding the Rabi frequency constant and
varying the pulse duration. The results are shown
in Fig. 11.

As expected from the simulations of section III,
both APCP and MLEV32Y are quite robust with
respect to rotation errors. For MLEV32Y, the sig-
nal remains essentially unchanged until reaching ro-
tation errors on the order of 20%, at which point the
ability to sense suddenly goes away. For APCP, the
degradation in sensing is a smoother process, but
tolerates the same approximate range of rotation er-
rors.
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FIG. 11. The signal (as defined in Section V A) as a func-
tion of the rotation fraction (as defined in Section III) for
the APCP and MLEV32Y protocols, using Rabi frequen-
cies such that the “correct” π pulse durations were 3.3 µs
and 6.6 µs, respectively; the signal was measured after a
pulse sequence duration of 35 ms and 2 ms, respectively.
The on-resonance data is taken at a pulse repetition rate
of 76.1 kHz; the off-resonance data is taken at 100 kHz
and 80 kHz for APCP and MLEV32Y, respectively.

VI. CONCLUSIONS

To reiterate, all the pulse protocols tested are ex-
pected to give identical results in the absence of
noise, leaks, and pulse errors. In practice, we see
remarkably different results between them.

Simulations show that all four protocols explored
— APCP, CPMG, XY16, and MLEV32Y — are
highly insensitive to pulse errors in the absence of
external interactions. However, APCP and CPMG
are much less sensitive to leaks than the other two
protocols. Consistent with simulation, experimen-
tally we find APCP and CPMG produce the longest
coherence times. The effects of leaks in our sys-
tem result in MLEV having an order-of-magnitude
shorter coherence time, with the XY protocol even
worse.

However, for sensing, simulations imply that
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APCP and CPMG are much more sensitive to pulse
errors than XY and MLEV. This is borne out in
experiment, where we observe that MLEV enables
sensing of nearby target spins with an order-of-
magnitude reduction in both the sensing time and
the sensing linewidth when compared to APCP and
CPMG.

In general, for sensing under conditions of minimal
pulse errors and significant leaks, we would expect
APCP and CPMG to significantly outperform XY
and MLEV. For systems with minimal leaks and sig-
nificant pulse errors we would expect the opposite.
We have yet to find a sensing protocol that offers

both the insensitivity to leaks of APCP/CPMG and
the insensitivity to pulse errors of XY/MLEV. But
for systems that suffer from both issues, MLEV ap-
pears to offer a compromise that gives the best per-
formance of the four.
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